Swimming performance studies on the eastern Pacific bonito Sarda chiliensis, a close relative of the tunas (family Scombridae) I. Energetics.

نویسندگان

  • C A Sepulveda
  • K A Dickson
  • J B Graham
چکیده

A large swim tunnel respirometer was used to quantify the swimming energetics of the eastern Pacific bonito Sarda chiliensis (tribe Sardini) (45-50 cm fork length, FL) at speeds between 50 and 120 cm s(-1) and at 18+/-2 degrees C. The bonito rate of oxygen uptake ((O(2)))-speed function is U-shaped with a minimum (O(2)) at 60 cm s(-1), an exponential increase in (O(2)) with increased speed, and an elevated increase in (O(2)) at 50 cm s(-1) where bonito swimming is unstable. The onset of unstable swimming occurs at speeds predicted by calculation of the minimum speed for bonito hydrostatic equilibrium (1.2 FL s(-1)). The optimum swimming speed (U(opt)) for the bonito at 18+/-2 degrees C is approximately 70 cm s(-1) (1.4 FL s(-1)) and the gross cost of transport at U(opt) is 0.27 J N(-1) m(-1). The mean standard metabolic rate (SMR), determined by extrapolating swimming (O(2)) to zero speed, is 107+/-22 mg O(2) kg(-1) h(-1). Plasma lactate determinations at different phases of the experiment showed that capture and handling increased anaerobic metabolism, but plasma lactate concentration returned to pre-experiment levels over the course of the swimming tests. When adjustments are made for differences in temperature, bonito net swimming costs are similar to those of similar-sized yellowfin tuna Thunnus albacares (tribe Thunnini), but the bonito has a significantly lower SMR. Because bonitos are the sister group to tunas, this finding suggests that the elevated SMR of the tunas is an autapomorphic trait of the Thunnini.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Swimming performance studies on the eastern Pacific bonito Sarda chiliensis, a close relative of the tunas (family Scombridae) II. Kinematics.

The swimming kinematics of the eastern Pacific bonito Sarda chiliensis at a range of sustained speeds were analyzed to test the hypothesis that the bonito's swimming mode differs from the thunniform locomotor mode of tunas. Eight bonito (fork length FL 47.5+/-2.1 cm, mass 1.25+/-0.15 kg) (mean +/- S.D.) swam at speeds of 50-130 cm s(-1) at 18+/-2 degrees C in the same temperature-controlled wat...

متن کامل

Slow muscle function of Pacific bonito (Sarda chiliensis) during steady swimming.

The Pacific bonito, Sarda chiliensis, is anatomically intermediate between mackerel and tuna. The specialisations exhibited by tuna are present in the bonito, but to a lesser degree. Slow-twitch muscle strain and activity patterns were determined during steady swimming (tailbeat frequency 1.2-3.2 Hz) at four locations on the body of Sarda chiliensis using sonomicrometry and electromyography. Bo...

متن کامل

Temperature effects on Ca2+ cycling in scombrid cardiomyocytes: a phylogenetic comparison.

Specialisations in excitation-contraction coupling may have played an important role in the evolution of endothermy and high cardiac performance in scombrid fishes. We examined aspects of Ca(2+) handling in cardiomyocytes from Pacific bonito (Sarda chiliensis), Pacific mackerel (Scomber japonicus), yellowfin tuna (Thunnus albacares) and Pacific bluefin tuna (Thunnus orientalis). The whole-cell ...

متن کامل

Development of an acoustic telemetry tag for monitoring electromyograms in free-swimming fish

We report the development of an acoustic telemetry tag used to monitor electromyograms (EMGs) remotely from free-swimming marine fish. The device described amplifies and filters the EMG and then converts the electrical waveform into a frequency-modulated acoustic signal that is transmitted through water. The signal is then received, demodulated and recorded by the receiving system. The EMG tag ...

متن کامل

Comparative studies of high performance swimming in sharks I. Red muscle morphometrics, vascularization and ultrastructure.

Tunas (family Scombridae) and sharks in the family Lamnidae are highly convergent for features commonly related to efficient and high-performance (i.e. sustained, aerobic) swimming. High-performance swimming by fishes requires adaptations augmenting the delivery, transfer and utilization of O(2) by the red myotomal muscle (RM), which powers continuous swimming. Tuna swimming performance is enha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 206 Pt 16  شماره 

صفحات  -

تاریخ انتشار 2003